Click on the image for higher resolution
About 100 light-years away, in our own Milky Way galaxy, in the constellation Dorado, sits a planetary system named TOI 700. It is home to TOI 700 d (illustrated here), the first Earth-size habitable-zone planet discovered by TESS, NASA's Transiting Exoplanet Survey Satellite. Scientists confirmed the find, called TOI 700 d, using NASA's Spitzer Space Telescope and have modeled the planet's potential environments to help inform future observations. TOI 700 d is one of only a few Earth-size planets discovered in a star's habitable zone so far. Others include several planets in the TRAPPIST-1 system and other worlds discovered by NASA's Kepler Space Telescope.
While the exact conditions on TOI 700 d are unknown, scientists can use current information, like the planet's size and the type of star it orbits, to generate computer models and make predictions. Researchers at NASA's Goddard Space Flight Center in Greenbelt, Maryland, modeled 20 potential environments of TOI 700 d to gauge if any version would result in surface temperatures and pressures suitable for habitability.
Their 3D climate models examined a variety of surface types and atmospheric compositions typically associated with what scientists regard to be potentially habitable worlds. Because TOI 700 d is tidally locked to its star, the planet’s cloud formations and wind patterns may be strikingly different from Earth's. One simulation included an ocean-covered TOI 700 d with a dense, carbon-dioxide-dominated atmosphere similar to what scientists suspect surrounded Mars when it was young. The model atmosphere contains a deep layer of clouds on the star-facing side. Another model depicts TOI 700 d as a cloudless, all-land version of modern Earth, where winds flow away from the night side of the planet and converge on the point directly facing the star.
Image Credit: NASA/Goddard Space Flight Center
1 comment(s):
Post a Comment